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Abstract

In this report, we explore the Wigner quasiprobability distribu-
tion and its role in quantum optics, focusing on the measurement of
subpicosecond time intervals between two photons through the Hong-
Ou-Mandel (HOM) interference effect. Key topics include photon in-
distinguishability, quantum interference effects and photon statistics.
We review foundational experiments by Hong, Ou, and Mandel (1987)
and recent advances in photon imaging technologies.

1 Introduction

Photon statistics and the Wigner function play a crucial role in understanding
non-classical light. The Wigner function serves as a phase-space distribution
function, providing insights into quantum states where classical analogs fail.
Photons, obeying Bosonic statistics, exhibit unique quantum behaviors such
as bunching and anti-bunching, which are pivotal for technologies like quan-
tum computing and secure communication. We will explore the theory of the
Wigner Function and Photon statistics, and then we will review the original
Hong-Ou-Mandel 1987 paper, and the new 2015 rendition by Micha l Jachura
and Rados law Chrapkiewicz that includes higher precision and spatial reso-
lution of photon coalescense.
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2 Theory

2.1 Wigner Function

The Wigner function, introduced by Wigner in 1932, is a quasiprobability
distribution used in quantum mechanics to represent quantum states in phase
space. Due to the Heisenberg uncertainty principle, points in phase space are
not well-defined as in the classical phase space, requiring the use of regions.
Think of it as an region of area A = ∆x∆p = ℏ2/4. The general Wigner
distribution for a mixed state described by the density operator ρ̂ is given
by:

W (x, p) ≡ 1

2π

∫ ∞

−∞
dx

〈
q − x

2

∣∣∣∣∣ρ̂
∣∣∣∣∣q +

x

2

〉
exp(ipx) (1)

For Fock states |n⟩, the Wigner function becomes:

W|n⟩(α) =
2

π
(−1)ne−2|α|2Ln(4|α|2) (2)

where Ln are Laguerre polynomials. The Wigner function of the first four
Fock states have been shown in Fig. (1). It results in a very non-intuitive
result that has no classical analog. For the Fock state |0⟩, meaning there
is no light present, we still measure fluctuations with variance ℏ2/4. The
Wigner function becomes

W|0⟩(α) =
2

π
e−2|α|2 (3)

Having a maxima at the origin and exponentially decaying out in phase
space. This is precisely the ”vacuum states”, and have been demonstrated
to be fluctuations in the quantum vacuum or quantum fluctuations, resulting
in physical phenomena like the Casimir effect [ref]. We are going to get a
signal despite the having no photons in our system, which sets our ”standard
quantum limit”. Consider now a single excitation |1⟩

W|1⟩(α) = − 2

π
e−2|α|2(1 − 4|α|2) (4)

This is not expected. We have a negative probability for a single photon state
in the quadrature distribution. The minima is the origin, corresponding to
having zero probability of being at the origin of phase space. This means
that whenever we measure a single photon state, we will measure a random
number and value, but very unlikely (0, 0) in phase space. It’s important to
understand from this result that this causes us to never actually measure a
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Figure 1: The Wigner Function of the first four Fock States a) |0⟩, b) |1⟩, c)
|2⟩, d) |3⟩

.

single photon in experiments, because we always have some probability of
losing it on the way to the detector from the source. We instead get a mix
of single photon and the vacuum fluctuations, resulting in sort of a small dip
in the Gaussian of the single photon.

It is apparent in Fig. [1] that the probability is always highest for even
numbers. What does this mean? Well that it’s only possible for us to only
observe identical/indistinguishable photons in pairs. This is precisely shown
as the key result in the papers we will be reviewing about the Hong-Ou-
Mandel interference. It can also explain that photons experience bunching
and anti-bunching and that quantum entanglement is possible, due to the
innate photon statistics.

Therefore, in experiments, the output port will always only detect the
photons in pairs if they are indistinguishable. Only when the modes are dis-
tinguishable, we will detect singular photons. In other words, distinguishable
particles can only be observed in a ”lonely” state. A more detailed reasoning
by looking at the output states and probabilities is crucial to see how the
different photon states cancel out due to destructive interference.
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2.2 Coherent States in Fock Space

Looking at Quantum states of light and coherent states, it is quite different
than the classical intuition. Schrödinger and Glauber were looking for what
was the most ”classical” state, thinking it should somehow reduce to a laser
or a light field. The coherent state is the closest analog to the classical version
that incorporates Heisenbergs uncertainty principle. It is important to note
that a coherent state is not a pure photon state, it is a mixture of photons, a
superposition of Fock states/photons |n⟩ that minimizes the uncertainty in
the form of

|α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!

|n⟩ , |n⟩ ∈ Fν(H) =
∞⊕
n=0

SνH
⊗n (5)

It is the most classical state, with an amplitude of the intensity of the electric
field α ∝ E =⇒ |α|2 ∝ I. In the Wigner distribution, the coherent states
are equivalent to just displacing the vacuum state, showing the connection
between their statistics. So the state |α = 2⟩ = D(α = 2) |0⟩, where D(α) =
eαa

†−α∗a is the displacement operator. The only difference being then is that
it is like a sine wave, but with ”vacuum fuzz”, which is demonstrated in Fig.
[2]

Figure 2: Noise distribution of the generated squeezed states. (a) Coherent
state. (b) Amplitude-squeezed state. (c) Phase-squeezed state. (d) Squeezed
state with a squeezing angle of /3. 4 Yinghao et al. ”Generation of stable,
squeezed vacuum states at audio frequency using optical serrodyne sideband
modulation locking method”. Laser Physics Letters (2019).

4



2.3 Propagation of the optical field in the Heisenberg
picture

To understand how to quantized EM field behaves in a time evolution, we
consider the Heisenberg picture, where the statevectors are static and the op-
erators evolve in time. For a given system Hamiltonian Ĥ and some arbitrary
operator Ô, we have the Heisenberg picture given as

d

dt
Ô(t) =

1

ℏ
[Ĥ, Ô(t)] (6)

where the total Hamiltonian of the optical field is

Ĥ =
∑
k

ℏωka
†(k)â(k) (7)

Such that the time evolution of the annihilation operator is accordingly

d

dt
â(k, t) =

1

ℏ
[Ĥ, â(k, t)] =

1

ℏ
[ℏωkâ

†â, â] = iωkâ(k, t)

d

dt
â(k, t) = iωkâ(k, t) =⇒ â(k, t) = â0(k) · e−iωkt

Such that the time dependent quantized EM field becomes

Ê(r, t) = i

√
ℏω

2ϵ0V

(
â(k, t)eik·r − â†(k, t)e−ik·r) = Ê(+)(r) + Ê(−)(r) (8)

2.4 Hong-Ou-Mandel Interference

Now to understand how the output states ends up with only photons in
pairs for indistinguishable photons, it is important to investigate the Hong-
Ou-Mandel (HOM) interference. HOM interference is a quantum optical
phenomenon demonstrating the indistinguishability of photons. Two indis-
tinguishable photons incident on a beam splitter exit together due to quan-
tum interference, leading to zero coincidence counts at detectors [1]. This
effect is described by the transformation of input photon states at a perfect
50:50 beam splitter:

|11⟩ |12⟩ →
1√
2

(|21, 02⟩ − |01, 22⟩) (9)

This state shows no coincidence detections, implying perfect destructive in-
terference for indistinguishable photons, although with always some small
error in experiments.
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You will only observe two photons in mode 1 or two photons in mode 2,
never by themselves if they are perfectly indistinguishable. The output state
is similarly

|ψout⟩ = (R− T ) |11, 12⟩ + i(2RT )1/2 |21, 02⟩ + i(2RT )1/2 |01, 22⟩ (10)

If we look back at the coherent states that we discussed earlier, the clas-
sical analogue to the HOM effect occurs for two coherent states (in practice
laser beams) that interfere at a beam splitter. If there is a big difference in
phase, we will observe a coincidence rate that is equal to half of the average
count at long delays cδτ . We can introduce delay to increase coincidence
counts. If R + T = 1, then we have that the displacement of the beam
splitter appears as a delay in the field expression at the detectors as

Ê
(+)
1 (t) =

√
TÊ

(+)
01 (t− τ1) + i

√
RÊ

(+)
02 (t− τ1 + δτ) (11)

Ê
(+)
2 (t) =

√
TÊ

(+)
02 (t− τ1) + i

√
RÊ

(+)
01 (t− τ1 − δτ) (12)

where τ1 is the propagation time from mirror to detector, and ±cδτ is the
small displacement of the BS towards on or the other detector. We should
register close to zero coincidences as the delay goes approaches zero. Recall
the definition in the theory that the time dependence was for the annihilation
operator in the Heisenberg picture. Therefore, the displacement of the beam
splitter introduces a delay in the phase of the annihilation of a photon with

â(k, t = t− τ1 ± δτ) = â0(k)e−iω(t−τ1±δτ) (13)

As the delay between the idler and signal photons to the detectors become
smaller and smaller, the coincidence count get steeper and goes towards a
minima (optimally to zero). This is explained as where the fields destructively
interfere, and we have a pair of indistinguishable photons!

The basic entangling mechanics in linear optical quantum computing in
typical NOON states are explained by the HOM effect as the two-photon
quantum state |2, 0⟩ + |0, 2⟩ as seen above. Several experimental results
observe this with the HOM-dip, which is characteristic for experiments in-
volving the HOM effect as in Fig. [5]. We plot the number of coincidence
counts versus their delay or position of beam splitter by cδτ .

How well we see the HOM-dip is dependent of the visibility of the HOM
interference. The visibility of the interference is related to the states of the
two photons ρa, ρb as

V = Tr(ρaρb) (14)
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For indistinguishable photons ρa = ρb = ρ, it is simply the purity of the
source P = Tr(ρ2). An optimal single-photon source should deterministi-
cally deliver one photon at a time with no trade-off between photon indis-
tinguishability and efficiency of source.

One way to empirically observe the HOM-effect was firstly by Hong, Ou
and Mandel in 1987 by spontaneous parametric down conversion (SPDC)
with a nonlinear crystal and a 50/50 beamsplitter. It showed the char-
acteristic dip down to almost zero coincidences (except accidentals due to
experimental limitations) as seen in Fig. [5].

Almost 30 years later in 2015 it was observed by Michal and Radoslaw,
using single-photon-senstive intensified ”sCMOS” cameras that registered
single photons as bright spots. The bright spots are clearly distinguished
from the low-noise background or the quantum fluctuations as seen in Fig.
[4].

2.5 Photon statistics in HOM dip measurements

Consider the Fourier transform of the weight function ϕ(ω1, ω2)

G(τ) =

∫
dωϕ(ω0/2 + ω,w0/2 − ω)e−iωt (15)

As a source ω goes through SPDC in a nonlinear crystal, we get through
energy conservation two beams with lower energy ω1, ω2, equivalent to the
fact that ω0 = ω1+ω2. This is a idler and a signal photon. The corresponsing
correlated two-photon state is defined as

|ψ⟩ =

∫
dωϕ(ω1, ω0 − ω1) |ω1, ω0 − ω1⟩ (16)

They also have a joint probability distribution of the detection of photons at
both detectors at times t and t+ τ given as

P12(τ) = K|G(0)|2
[
T 2|g(τ)|2 +R2|(g(2δτ − τ)|2 −RT (g∗(τ)g(2δτ − τ) + c.c.)

]
(17)

If the variables were independent, the two-photon states would be possible
to be split up into a product of two single photon states. During HOM in-
terference, they cannot be separated into a product of two single photon
states since the DC photons are entangled, thus their frequency are de-
pendent on each other. The photons are indistinguishable and they have
spectral-temportal dependencies. This further showcases the fundamentally
non-classical behavior of the photon statistics. To prove that the destructive

7



interference is a two photon quantum interference, we impose that the num-
ber of coincidence count Nc must be lower than one half, as in the classical
analog.

The expected number Nc of photon coincidences is given by

Nc = C

[
R2 + T 2 − 2RT

∫∞
−∞ g(τ)g(τ − 2δτ)dτ∫∞

−∞ g2(τ)dτ

]
(18)

and in the special case when the correlation function g(ω0/2 + ω, ω0/2 − ω)
is Gaussian in ω with some bandwidth ∆ω, we get that g(τ) = e−(∆ωτ)2/2,
such that it simplifies to

Nc = C(R2 + T 2)

[
1 − 2RT

R2 + T 2
g(τ)

]
(19)

These curves will be superposed with the experimental data in the next sec-
tion. We can already see that for a 50/50 beamsplitter with R = T = 1/2,
and zero delay between photon arrival time τ → 0, we get zero photon co-
incidences, Nc → 0. This corresponds to having an indistinguishable photon
pair. It is closely tied to the sub-Poissonian statistics of the photon source,
typical of single-photon Fock states with photon number variance being lower
than a classical Poisson distribution for coherent states.

Photon statistics are characterized by the second-order correlation func-
tion g(2)(0), which describes photon bunching or anti-bunching. The HOM
effect relies on anti-bunched light, where g(2)(0) = 0, meaning photons
tend not to arrive simultaneously in the same mode. For classical (bunched)
light with g(2)(0) > 1 (as in a thermal or coherent state), photon bunching
reduces the quantum interference, leading to a higher coincidence rate and
lower visibility in the HOM experiment.

3 Experimental Review

3.1 Measurement of Subpicosecond Intervals

Hong, Ou, and Mandel’s 1987 experiment measured subpicosecond time in-
tervals using two-photon interference. The setup involved a 50:50 beam split-
ter and two single-photon detectors. The temporal overlap of photons led to
a reduction in coincidence counts, forming a ”dip” that provides temporal
resolution down to femtosecond scales.

The experiment is physically measuring photon coincidence rate
between the two detectors placed at the output ports of the 50:50 beam
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splitter, which is sensitive to temporal overlap of two photons generated
from the SPDC source. The measurement reveals that the two photons are
indistinguishable when the coincidence rate drops to a minima (or near zero).
The decrease in coincidence rate is equivalent to destructive interference of
the wavepackets, indicating temportal overlap and directly providing insight
to the coherent time tc of the photons.

3.2 Recent Advances in Photon Imaging

Figure 3: (a) Scheme of the intensified sCMOS camera detection system.
(b) Single-photon detection seen as bright phosphore flashes are localized
with a subpixel resolution using the real-time processing software algorithm.
We preselect events where at least two photons are detected. Micha l et al.
Shot-by-shot imaging of Hong–Ou–Mandel interference with an intensified
sCMOS camera Optics Letters (2015)

Jachura and Chrapkiewicz (2015) demonstrated shot-by-shot imaging of
HOM interference using an intensified sCMOS camera, allowing for spatially
resolved detection of photon pairs. Their work significantly advanced the res-
olution of quantum optical experiments and paved the way for more precise
photon measurements. This experiment physically measures two-photon
coincidence rate, but as an extension of the classical 1987, also includes spa-
tial resolution as a physical measurement. This helps visualize the coalescense
of photons only being detected in one singular port if they are indistinguish-
able, otherwise the distiguishable photons stay lonely and not in pairs, as
seen in figure [4]. When the photons are identical their wavefunctions in-
terfere such that the states corresponding to ”neither photon pairs up” and
”both photons pair up (i.e they swap places)” destructively cancel. Think
of it like this: if the photons are identical, the first state is the same as the
second state, just with a negative sign, so they have to cancel and the only
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Figure 4: 20 frames from co-incidences on H and V port of a beamsplitter for
a) distinguishable photons and b) indistinguishable photons. Micha l et al.
Shot-by-shot imaging of Hong–Ou–Mandel interference with an intensified
sCMOS camera Optics Letters (2015)

states left are where one photon pairs up.
Being distinguishable is the same as being lonely in the quantum world,

whereas indistinguishable you pair up with another identical photon. A
stream of photons will have some statistics depending on the source and
whats been done to them prior to detection. If the photons are closer to-
gether than they would be if they obeyed Poissonian statistics, they are
bunched. Basically, if two indistinguishable photons enter different input
ports of a beam-splitter, they will always exit the same port together. This
is precisely what is shown by the green dots on b) in Fig. [5] and is always
the case if they are highly indistinguishable. It can only be explained by the
fact that there is destructive interference happening.

4 Discussion

. We imposed earlier that the number of coincidence count Nc must be lower
than one half, which is clear from Fig. [5]. HOM interference provides direct
evidence of photon indistinguishability and destructive quantum interference.
The recent technological advances as we see in the second curve in Fig. [5] is
close to perfect, having a visibility of V = 96.3 ± 1.1%, including intensified
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Figure 5: If the delay / beam splitter position cδτ between them is large,
we can register some average number of coincidence count. In this case,
the two wavepackets in the different modes are distiguishable and theres
no interference taking place. If the delay becomes smaller and smalles, the
wavepackets begin to overlap and destructively interfere, meaning we register
close to zero coincidence count, causing the HOM dip curvature. At zero
delay the photons arrive at the same time, ideally causing zero coincidence
and a stronger interference visibility.

cameras, allow for more refined measurements and contribute to the growing
field of quantum imaging [2].

To see it from a more applied perspective, the HOM effect proves itself a
powerful tool for example for implementing two-qubit gates in linear optical
quantum computing. The HOM interference is utilized with indistinguishable
photons at beam splitters to perform quantum logic like the typical CNOT or
CZ gates. It is however important to note that these gates are probabilistic
as discussed earlier, and require high precision to be scalable.

4.1 Physical limitations

Temporal, spectral and spatial distinguishability between the DC signal and
idler photon significantly reduces the interference visibility. All degrees of
freedom must be indistinguishable for the two photons for the interference
to be occur. In the 1987 paper, Hong et. al. mention the need for high
overlap between the photon wavepackets in the temporal domain. Temporal
mismatch reduces overlap and thus visibility.

Firstly, photon flux rate causes accidental co-incidences and multi-
photon emissions, which in turn lowers interference visibility. When two
photons from independent pairs get accidentally detected as coincident, they
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can quadratically increase accidentals with the gating time of the detection
system. The newer system from 2015 with the sCMOS camera, uses a care-
fully adjusted gating time (here 40 ns) to mitigate the accidentals.

Furthermore, the detector resolution implies that poor detector timing
resolution simply blurs the temporal correlation between photons. Resolution
should be much smaller than the coherence time of the photons. If the
detector timing jitter is large relative to the photon coherence time, the
temporal overlap of the photons will not be measured accurately, reducing
the sharpness of the HOM dip.

Next we must consider detector noise and dark counts. The 2015
paper acknowledges this issue and emphasizes that a ”high signal-to-noise”
ratio is crucial for good visibility (2). The way they minimized dark counts
was precisely by using advanced photon detectors like the intensified sCMOS
camera that is specifically designed for low noise at single-photon level.

Other issues are certainly quantum fluctuations, beam splitter imperfec-
tions, optical misalignment and filter bandwidth. The 1987 paper discusses
non-ideal beam splitters to be perfectly ideal 50:50 beam splitters for perfect
destructive interference. They accounted for a reflectivity/transmissivity ra-
tio of 0.95, leading to small residual coincidences at the dip (1). The residuals
could also possibly be affected by quantum fluctuations.

Optical misalignment such as mirrors or apertures can impose imperfect
overlaps between the two DC signal and idler photon modes. Lastly, the
filter bandwidth in the detection paths does ultimately determine the coher-
ence time. If the bandwidth is too large, the frequency correlation between
photons become inconsistent, reducing the visibility.

It is clear that the Michal et. al. (2015) sCMOS camera technique sub-
stantially increasted the visibility up to V = 96.3 ± 1.1%, which means that
high intensity cameras like the sCMOS is a promising technology to address
these issues as well as other techniques like optical delay lines and a more
advanced experimental setup.

4.2 Width of the dip δτ feature in coincidence mea-
surement and spatial coherence length

If the delay between them is large, we can register some average number of co-
incidence count. In this case, the two wavepackets in the different modes are
distiguishable and theres no interference taking place. If the delay becomes
smaller and smalles, the wavepackets begin to overlap and destructively inter-
fere, meaning we register close to zero coincidence count - causing the HOM
dip curvature - at zero delay the photons arrive at the same time -¿ ideally
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causing zero coincidence Is it consistent with the spatial coherence length?
Well for a single photon, the original experiment showed tc = 32µm = 100fs
. The HOM dip width reflects the temporal overlap of two-photon interfer-
ence, which is precisely half the coherence length of each individual photon,
hence δτ = 16µm = 50fs. This is consistent with the spatial coherence
length.

The spatial coherence extent is the range over which the optical pulse can

keep a consistent phase relationship Lc = λ2
o

∆λ
. Depends in practice on size of

laser and wavelength, here 351.1 nm argon-ion laser.
Spatial coherence extent can be determined from the bandwidth of the IF
filters and the central wavelength of the photons. Narrower bandwidth ∆λ
implies longer coherence length. We assume that the direction of signal &
idler photons are well defined by the aperture, but frequency spreads are
substantial, which is largely determined by the interference filters IF)

When an optical pulse passes through an interference filter, spatial filter-
ing can occur. The filter can allow only certain spatial modes of the light to
propagate, effectively selecting regions of coherence.

So the question remains, which element enables precise tuning of delay
between pulses? Since the HOM dip is related to coherence time of photon
wave packets, the detector timing must be finer than the coherence time.
Hong, Ou and Mandel were using a precisely calibrated micrometer, with
potential improvements by utilizing piezoelectric transducers. One of the
more recent techniques that Michal et. al. employs were optical delay lines.
In the Hong-Ou-Mandel (HOM) interference experiment, precise tuning of
the delay between the two optical pulses (i.e., the two down-converted pho-
tons) is crucial for observing the interference effect. This delay controls the
temporal overlap of the two photons at the beam splitter. If the photons
arrive at the beam splitter at exactly the same time, they will destructively
interfere, and reduce coincidence counts, leading to the HOM dip.

5 Conclusion

With the Hong-Ou-Mandel effect, we are able to measure subpicosecond
time intervals between two photons. The study of photon statistics and
the Wigner function is essential for understanding these non-classical and
non intuitive results in quantum optics. The Wigner function’s negativity
in certain regions highlights the non-classical nature of quantum states and
the interference that we see in the HOM dip, which contrasts with classical
phase space distributions. The effect is readily used in methods like linear
optical quantum computing for performing essential quantum logic gates with
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high precision. There are also potential improvements that would make the
technique more powerful, with intensified cameras as the most promising
technologies as demonstrated by Michal et. al.
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